Genetic control of aging – is it time for a rethink?

Latest articles

“World’s first” cultural-matching app for care sector launches

Care receivers can be paired with carer based on religious understanding and culture thanks to AI tech developed during pandemic. A graduate has created what...

Biotech LyGenesis expands its liver regeneration tech

A new peer-reviewed paper demonstrates the success of using fat-associated lymphoid clusters as expandable niches for ectopic liver regeneration. LyGenesis, a clinical-stage biotech developing cell...

NURO embarks on funding round for neurotech communication system

World’s first multimodal neurotech operating system from NURO allows you to communicate using just your brain. DISCLOSURE: Longevity.Technology (a brand of First Longevity Limited) has...

It’s time to reboot longevity and healthy aging

Dr Michael Roizen calls for fundamental societal changes to ensure the benefits of longevity and healthy aging are realised. Later this year, best-selling author Michael...

Most read

New supplement slows aging and promotes weight loss

Sugar-proof your way to a longer life. Reducing AGEs to slow aging and increase weight loss – how one supplement is fighting the war...

An antiaging supplement that also reduces appetite?

One for the AGEs: Juvify signs IP licensing deal with Buck Institute for GLYLO antiaging supplement that aims to reduce glycation. A researcher at the...

Resveratrol – the small molecule with big antiaging ideas

When it comes to antiaging molecules, we can learn a thing or two from plants. As so often in natural world, plants have a few...

Editor's picks

“World’s first” cultural-matching app for care sector launches

Care receivers can be paired with carer based on religious understanding and culture thanks to AI tech developed during pandemic. A graduate has created what...

Biotech LyGenesis expands its liver regeneration tech

A new peer-reviewed paper demonstrates the success of using fat-associated lymphoid clusters as expandable niches for ectopic liver regeneration. LyGenesis, a clinical-stage biotech developing cell...

NURO embarks on funding round for neurotech communication system

World’s first multimodal neurotech operating system from NURO allows you to communicate using just your brain. DISCLOSURE: Longevity.Technology (a brand of First Longevity Limited) has...

Click the globe for translations.

National Institute of Health scientists discover that bacteria may drive activity of many hallmark aging genes in flies.

To better understand the role of bacteria in health and disease, National Institutes of Health researchers fed fruit flies antibiotics and monitored the lifetime activity of hundreds of genes that scientists have traditionally thought control aging.

Longevity.Technology: The more we investigate aging, the more we are surprised; Drosophila has a long history of discovery in longevity research, from calorie restriction to insulin signalling, and now it would seem that antibiotics can influence gene expression and even extend life. Of course, no-one is advocating we go crazy with the amoxicillin just yet, but this fascinating discovery warrants further investigation.

To the scientists’ surprise, the antibiotics not only extended the lives of the flies but also dramatically changed the activity of many of these genes. Their results suggested that only about 30% of the genes traditionally associated with aging set an animal’s internal clock while the rest reflect the body’s response to bacteria [1].

“For decades scientists have been developing a hit list of common aging genes. These genes are thought to control the aging process throughout the animal kingdom, from worms to mice to humans,” said Edward Giniger, PhD, senior investigator, at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and the senior author of the study published in iScience. “We were shocked to find that only about 30% of these genes may be directly involved in the aging process. We hope that these results will help medical researchers better understand the forces that underlie several age-related disorders [2].”

Like some of the best scientific discoveries, the results happened by accident. Dr Giniger’s team studies the genetics of aging in a type of fruit fly called Drosophila; previously, the team showed how a hyperactive immune system may play a critical role in the neural damage that underlies several aging brain disorders [3]. However, that study did not examine the role that bacteria may have in this process.

To test this idea, they raised newborn male flies on antibiotics to prevent bacteria growth. At first, they thought that the antibiotics would have little or no effect. But, when they looked at the results, they saw something interesting. The antibiotics lengthened the fly’s lives by about six days, from 57 days for control flies to 63 for the treated ones.

“This is a big jump in age for flies. In humans, it would be the equivalent of gaining about 20 years of life,” said Arvind Kumar Shukla, PhD, a post-doctoral fellow on Dr Giniger’s team and the lead author of the study. “We were totally caught off guard and it made us wonder why these flies took so long to die [2].”

Dr Shukla and his colleagues looked for clues in the genes of the flies. Specially, they used advanced genetic techniques to monitor gene activity in the heads of 10, 30, and 45-day old flies. In a previous study, the team discovered links between the age of a fly and the activity of several genes [4]. In this study, they found that raising the flies on antibiotics broke many of these links.

Overall, the gene activity of the flies fed antibiotics changed very little with age. Regardless of their actual age, the treated flies genetically looked like 30-day old control flies. This appeared to be due to a flat line in the activity of about 70% of the genes the researchers surveyed, many of which are thought to control aging.

“At first, we had a hard time believing the results. Many of these genes are classical hallmarks of aging and yet our results suggested that their activity is more a function of the presence of bacteria rather than the aging process,” said Dr Shukla [2].

Notably, this included genes that control stress and immunity. The researchers tested the impact that the antibiotics had on these genes by starving some flies or infecting others with harmful bacteria and found no clear trend. At some ages, the antibiotics helped flies survive starvation or infection longer than normal whereas at other ages the drugs either had no effect or reduced the chances of survival.

Further experiments supported the results. For instance, the researchers saw similar results on gene activity when they prevented the growth of bacteria by raising the flies in a completely sterile environment without the antibiotics. They also saw a similar trend when they reanalysed the data from another study that had raised flies on antibiotics. Again, the antibiotics severed many of the links between aging and hallmark gene activity.

Finally, the team found an explanation for why antibiotics extended the lives of flies in the remaining 30% of the genes they analysed. In short, the rate at which the activity of these genes changed with age was slower than normal in flies that were fed antibiotics.

Interestingly, many of these genes are known to control sleep-wake cycles, the detection of odorants, and the maintenance of exoskeletons, or the crunchy shells that encase flies. Experiments on sleep-wake cycles supported the link between these genes and aging. The activity of awake flies decreased with age and this trend was enhanced by treating the flies with antibiotics.

“We found that there are some genes that are in fact setting the body’s internal clock,” said Dr Giniger. “In the future, we plan to locate which genes are truly linked to the aging process. If we want to combat aging, then we need to know precisely which genes are setting the clock [2].”

[1] https://www.cell.com/iscience/pdf/S2589-0042(21)00671-4.pdf
[2] https://www.nih.gov/news-events/news-releases/study-suggests-scientists-may-need-rethink-which-genes-control-aging
[3] https://www.nih.gov/news-events/news-releases/nih-study-implicates-hyperactive-immune-system-aging-brain-disorders
[4] https://www.nih.gov/news-events/news-releases/nih-scientists-search-clocks-behind-aging-brain-disorders

Image credit: Ranjith Alingal / Unsplash

 

Eleanor Garth
Deputy Editor Now a science and medicine journalist, Eleanor worked as a consultant for university spin-out companies and provided research support at Imperial College London and various London hospitals in a former life.

Most popular

New supplement slows aging and promotes weight loss

Sugar-proof your way to a longer life. Reducing AGEs to slow aging and increase weight loss – how one supplement is fighting the war...

An antiaging supplement that also reduces appetite?

One for the AGEs: Juvify signs IP licensing deal with Buck Institute for GLYLO antiaging supplement that aims to reduce glycation. A researcher at the...

Resveratrol – the small molecule with big antiaging ideas

When it comes to antiaging molecules, we can learn a thing or two from plants. As so often in natural world, plants have a few...

Sugar-proof your health with the GLYLO weight loss and antiaging supplement

Move your New Year's resolution up a gear with GLYLO, a double-action supplement that can increase weight loss while also slowing aging. Choosing an effective...

Related articles

Exercise protects brain against Alzheimer’s by safeguarding synapses

UCSF researchers find enhanced nerve transmission is seen in older adults who remain active. When elderly people stay active, their brains have more of a...

Cytosurge wins funding to address bottlenecks in neuroscience research

R&D project by Cytosurge and the Laboratory of Biosensors and Bioelectronics at the Swiss Federal Institute of Technology receives funding from Innosuisse. Cytosurge, a provider...

Kitalys Institute: breaking down the barriers to longevity clinical trials

Institute's founder calls for regulatory changes to allow geroscience innovation to flourish and enable true longevity trials. “Preserve health, prevent disease, prolong healthspan,” begins the...

New partnership to accelerate microbiome analysis with AI augmentation

Eagle Genomics and Quadram Institute’s new strategic partnership set to accelerate microbiome analysis through AI-augmented knowledge discovery platform. Today, Eagle Genomics, the Deep Tech software business...

New study reveals ways to help protect bones as we age

Tackling aging sometimes needs a left-field approach – especially when it comes to protecting our bones. Aging affects us right down to our bones; bone...

    Subscribe to our newsletter