Scientists reverse brain cell aging

Latest articles

The Alliance for Longevity Initiatives – fighting aging

Advancing legislation and policies that aim to increase healthy human lifespan. Longevity is a journey that would be good to imagine we're all taking together;...

Team builds first living robots – that can reproduce

AI-designed Xenobots reveal entirely new form of biological self-replication which could prove promising for regenerative medicine. Birds do it, bees do it... now even living...

Aging in place trailblazer focus – Carewell

Carewell – aiding individuals through their caregiving journey with empathy and knowledge. Over the coming weeks, we will be bringing you extracts from 7 trailblazer...

Humanpeople raising £700k for AI preventative health platform

Digital preventative health platform combines blood, DNA and microbiome testing to power up your healthspan with highly personalised supplements. DISCLOSURE: Longevity.Technology (a brand of...

Most read

New supplement slows aging and promotes weight loss

Sugar-proof your way to a longer life. Reducing AGEs to slow aging and increase weight loss – how one supplement is fighting the war...

An antiaging supplement that also reduces appetite?

One for the AGEs: Juvify signs IP licensing deal with Buck Institute for GLYLO antiaging supplement that aims to reduce glycation. A researcher at the...

Resveratrol – the small molecule with big antiaging ideas

When it comes to antiaging molecules, we can learn a thing or two from plants. As so often in natural world, plants have a few...

Editor's picks

The Alliance for Longevity Initiatives – fighting aging

Advancing legislation and policies that aim to increase healthy human lifespan. Longevity is a journey that would be good to imagine we're all taking together;...

Team builds first living robots – that can reproduce

AI-designed Xenobots reveal entirely new form of biological self-replication which could prove promising for regenerative medicine. Birds do it, bees do it... now even living...

Aging in place trailblazer focus – Carewell

Carewell – aiding individuals through their caregiving journey with empathy and knowledge. Over the coming weeks, we will be bringing you extracts from 7 trailblazer...

Click the globe for translations.

Researchers tackle ‘brain stiffness’ with a soft touch approach that could see a cure for Alzheimer’s.

As we age, our brain tissue becomes progressively stiffer and can cause brain stem cell dysfunction. Now a University of Cambridge team based at the Wellcome-MRC Cambridge Stem Cell Institute has discovered a way to rejuvenate aging brain cells by mitigating this stiffness.

Longetivy.Technology: The Cambridge team has discovered not only that age-related brain stiffness impacts brain function, but how to lessen – and even reverse – that impact. This will have implications for preventing diseases like multiple sclerosis as well as preventing a loss of brain function with age.

The TRL score for this Longevity.Technology domain is currently set at:

The TRL score for the technology addressed in this article is: “Late proof of concept demonstrated in real-life conditions.”

The Cambridge team examined brains of both young and old rats, focusing on this age-related brain stiffening and how it affects oligodendrocyte progenitor cells (OPCs). OPCs are brain stem cells that play a role in keeping our brains functioning normally as well as myelinating our neurons and nerves.

Myelin is a sleeve of fatty cells and it insulates the axon from electrical activity meaning the speed of the brain’s electric signal is preserved [1]. The function of OPCs declines with age, meaning the regeneration of myelin is compromised. In the debilitating disease multiple sclerosis (MS), the myelin is damaged and not replaced, meaning that unprotected nerves are damaged or destroyed; the nerves can no longer transmit messages properly, leading to physical impairment and loss of vision and even paralysis [2].

The researchers wanted to determine if this declining OPC function is reversible so they transplanted OPCs from older rats into the softer, spongier brains of younger specimens. The more-aged cells were rejuvenated, exhibiting behaviour typified by younger, healthier, more vigorous cells [3].

Research co-leader Dr Kevin Chalut said: “We were fascinated to see that when we grew young, functioning rat brain stem cells on the stiff material, the cells became dysfunctional and lost their ability to regenerate, and in fact began to function like aged cells. What was especially interesting, however, was that when the old brain cells were grown on the soft material, they began to function like young cells – in other words, they were rejuvenated [4].”

To fully understand the effect of the softer environment on the older OPCs, the scientists devised a range of scaffolds – both biological and synthetic – that had differing degrees of stiffness, but were similar to varying brain ages; rat brain stem cells were then grown on these scaffolds and studied to see how they functioned [4].

The next step was figuring out just how the OPCs were sensing the sponginess of their surroundings. The research team found that a protein called Piezo1 was situated on the OPCs’ surface and signalled the softness of environments to cells. By tweaking this protein, the team were able to mislead the cells about their situation, causing them to behave as if they were younger.

The study’s other co-leader, Professor Robin Franklin commented: “When we removed Piezo1 from the surface of aged brain stem cells, we were able to trick the cells into perceiving a soft surrounding environment, even when they were growing on the stiff material. What’s more, we were able to delete Piezo1 in the OPCs within the aged rat brains, which lead to the cells becoming rejuvenated and once again able to assume their normal regenerative function [6].”

The implications for research into multiple sclerosis is clear; indeed this study was part-funded by the MS Society and their Director of Research, Dr Susan Kohlhaas, said of the results: “MS is relentless, painful, and disabling, and treatments that can slow and prevent the accumulation of disability over time are desperately needed. The Cambridge team’s discoveries on how brain stem cells age and how this process might be reversed have important implications for future treatment, because it gives us a new target to address issues associated with aging and MS, including how to potentially regain lost function in the brain [7].”

[1] https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2015/myelin
[2] https://msdmnls.co/2Zcqfpm
[3] https://www.cam.ac.uk/research/news/cambridge-scientists-reverse-ageing-process-in-rat-brain-stem-cells
[4] https://newatlas.com/brain-stem-cells-opcs-reverse-aging-ms-cambridge/61063/
[5] https://www.nature.com/articles/s41586-019-1484-9
[6] https://bit.ly/2Hdqvyq
[7] https://bit.ly/2z9bLfq
Image: photo.ua / Shutterstock.com
Eleanor Garth
Deputy Editor Now a science and medicine journalist, Eleanor worked as a consultant for university spin-out companies and provided research support at Imperial College London and various London hospitals in a former life.

Most popular

New supplement slows aging and promotes weight loss

Sugar-proof your way to a longer life. Reducing AGEs to slow aging and increase weight loss – how one supplement is fighting the war...

An antiaging supplement that also reduces appetite?

One for the AGEs: Juvify signs IP licensing deal with Buck Institute for GLYLO antiaging supplement that aims to reduce glycation. A researcher at the...

Resveratrol – the small molecule with big antiaging ideas

When it comes to antiaging molecules, we can learn a thing or two from plants. As so often in natural world, plants have a few...

Tree of Longevity – understanding how supplements work

Pathways? Hallmarks? Biomarkers? Understanding the longevity supplements lingo can help you make better choices for your healthspan. Longevity supplements differ from other 'generic supplements' as...

Related articles

Printers that can now print DNA

DNA Script obtains CE Mark for SYNTAX DNA printing platform. DNA Script, a leader in Enzymatic DNA Synthesis (EDS), announced the CE marking of its SYNTAX System, the...

Eliminating senescent cells in fat can alleviate signs of diabetes

Deleting dysfunctional cells could lead to game-changing treatments for diabetes and other metabolic diseases. Eliminating old, dysfunctional cells in human fat also alleviates signs of...

Longevica: bridging the gap between longevity science and consumers

Longevica CEO sheds further light on work to develop an “open research platform” to drive both longevity science and commercialisation. Following yesterday’s $2.5 million funding...

Young blood: discover the possibilities of plasma based therapy

The evolution of plasma-based therapeutics is accelerating – our FREE report cuts through the young blood hype for the lowdown on the latest therapies. Our...

Longevica raises $2.5 million for open research platform

$2.5m in funding to support longevity research platform and study to accelerate the discovery of life extension mechanisms, launching in 2022. Longevica, a life science...

    Subscribe to our newsletter